Quantcast
Channel: nixie tube – Hackaday
Viewing all 47 articles
Browse latest View live

Homemade Nixie Tubes

$
0
0

home-made nixie tubes

Do you love Nixie Tubes? Upset that they aren’t really manufactured anymore, and the cost of old ones is rising? Why not make your own? That’s exactly what [Dalibor] of the Czech Republic is up to, including blowing the glass tubes himself!

He’s chosen the Z568 nixie tubes to copy, as they are his favorite style of nixie. To create the display he has etched the digits and housing out of 0.3mm stainless steel sheet — which potentially means if he gets the hang of making the tubes, he could actually produce them to sell! To perform the glass blowing, he scored a Heathway glassblowing lathe off eBay — but unfortunately he hasn’t documented much of anything on making the glass tubes, which is too bad because we think that would be equally fascinating as the nixie displays themselves. On his first attempt with a properly sealed tube, the nixie worked and he even recorded striking voltage values very similar to industry tubes — not bad for something made in a backyard shed!

He has since then continued refining this art and is entering a glass-art contest called “When Prague Meets Shanghai” with a beautiful entry dubbed the ShanghaiTime Nixie Clock.

If this post seems vaguely familiar, it’s because this isn’t the first time we’ve posted an article about homemade nixie tubes, but we think [Dalibor's] is by far the most elegant! Stick around after the break to see one of his first test videos — You might even think he’s cheating, the tubes look so professional!


Filed under: misc hacks

Retro Modern Nixie Clock

$
0
0

timeface

[Reboots] is a humble hacker who enjoys nixie tubes. So when he saw an old General Electric battery charger for sale at a hamfest, he thought: “that case would make a nice clock…”

He was first exposed to nixie tube clocks a few years ago when his brother gave him a DIY nixie clock kit from [Peter Jensen's] website TubeClock.com — it was an easy build, and worked very well. It also introduced him to a unique driver for nixie tubes, an HV5622 high-voltage shift register made by Supertex inc. Compared to the traditional (and rare) 74141 nixie driver chips or discrete transistor drivers, the HV5622 is much smaller, requires less microcontroller I/O’s, and is not as picky when it comes to powering it.

The nixie tubes he chose for the project came from a lot sale on eBay, Russian surplus IN-12 tubes. He even managed to find an english datasheet for them!

nixieps

Having decided on the nixie tube, driver, and case, he now needed a reliable power supply. Threeneuron’s design fit the bill nicely, however it ended up being a bit noisy under load, but [Reboots] notes that the TubeClock kit used a free-running transistor oscillator, which was in fact even louder under load!

From there it was a matter of testing the tubes, prototyping some PCBs, and programming the ATmega48. Simple, right? Nixie’s are never that simple. But lucky for us, [Reboots] has an amazing build write up on his site, so if you’re interested in learning more, take a look!

Oh, and if you’re looking for a really unique nixie clock — why not build one without a PCB entirely? Just don’t touch the high voltage lines…


Filed under: clock hacks

Nixie-ify Me Necklace

$
0
0

big-nixie

[Armilar] wanted to cheer up his friend who was going through a rough spot at the time — she really likes Dieselpunk, so he decided to improvise a Dieselpunk themed photo shoot for her. We’re assuming they had other costumes and props, but [Armilar] had this idea to make a nixie tube pendant for a while, he’d just have to expedite the build process to have it ready!

What he managed to whip up the day of the shoot looks amazing considering the time involved, if not just a little bit ill-advised. There may or may not be 200VAC running around his friend’s neck.

He’s using an electroluminescent driver rated for 5VDC to 100VAC, over-powered to 12VDC, resulting in about 200VAC, which is just enough to make the nixie glow a nice warm orange. In an effort to minimize the size of the pendant, he had to keep the battery and driver hanging off the back of the necklace.

It was a bit unsafe, but the shoot went off without a hitch thankfully. Fast forward a few months and [Armilar] decided to try redesigning it so it could actually be worn on a regular basis, without fear of electrocution.

He discovered that you can use a flash bulb transformer at about a 50% duty cycle to reduce the audible whine it gives off. The one he found was smaller than his fingernail, meaning he could also design it right into the pendant. His new pendant (while not completely finished yet) now only has 3.5V running around his neck.

200VAC wouldn’t hurt that much… would it?


Filed under: misc hacks

EL Wire Nixie Tube is in your Reach

$
0
0

FUQ84C3HS0D05D9.MEDIUM

Nixie tubes are awesome, but sometimes a little out of reach for some makers, whether it is a matter of obtaining them, or figuring out how to drive them. The hackerspace over at H3 Laboratories decided to try making a fun alternative — EL wire nixie tubes.

[Marty] leads us through the build in a very detailed Instructable, which makes use of CoolNeon EL wire. He’s using an Arduino Uno with a CoolNeon shield to control it. The trickiest part of this build is forming the numbers to minimize the overlap — to figure this out he modeled it in Blender. He created a test jig and formed the numbers using coat hanger wire first before playing around with the EL wire.

EL wire can be soldered together — it’s just a bit of a fine art, which is explained in another detailed Instructable. To black out parts of the number and the trailing wires, [Marty] made use of black plastic dip. The numbers are mounted on a Styrofoam cylinder which fits into the bottom of a large masonry jar. It’s a great build and a fun project to get into Nixies … without actually getting into Nixies.

Stick around for a video of it in operation.

[Thanks Guillermo!]


Filed under: Arduino Hacks

Custom Nixie Tube PSU is a Lesson in Good PCB Design

$
0
0

Nixie HVPSU

[Jan Rychter] was sick and tired of not being able to find the right power supply for his Nixie tube projects, so he decided to design his own. [Jan] started out designing around the MAX1771 (PDF) DC-DC controller, but quickly discovered he was having stability problems. Even after seven board revisions, he was still experiencing uncontrolled behavior. He ended up abandoning the MAX1171 and switching to the Texas Instruments TPS40210. After three more board designs, he finally has something that works for him. [Jan] admits that his design is likely not perfect (could have fooled us!), but he wanted to release it to the world as Open-Source Hardware to give back to the community.

The end result of [Jan's] hard work is a 5cm x 5cm board that generates four separate output voltages from a single 12V source. These include both a 3.3V and 5V output for digital logic as well as a 220V out put for Nixie tubes and a 440V maximum output for dekatrons. The circuit also features several safety features including over-current protection, thermal shutdown, and slow-start. Be sure to check out [Jan's] webpage to view out the schematics and technical information for this awesome circuit.

Need some Nixie tubes to go with that circuit? We know some resources for you to check out. Or you could always just build your own. How can you use this board in your next project?


Filed under: hardware

The State-Based Nixie Multimeter

$
0
0

state

Instead of numbers the IN-15A Nixie tube has symbols, specifically n, μ, P, -, +, m, M, k, Π, and %. The related IN-15B Nixie has letters: A, F, H, Hz, Ω, S, V, and W. These should look familiar to you. [kittan] decided it would be really cool to have a Nixie-equipped multimeter, and since he’s going retro fabulous anyway, he might as well make his multimeter controllerless, with discrete logic and comparator ICs. It’s a state-based Nixie multimeter, and it’s going to be freakin’ awesome.

The basic plan of the multimeter is a precision 1V voltage reference, a bunch of opamps, and a ton of resistors to form a ladder All the opamps in each decade are XOR’d together, so when one of the ten comparators for each decade stage is tripped, only one number will display on the (numeric) Nixie tube.

With a reasonable plan for measuring a voltage, it’s not too hard to expand the design for other measurements. V=IR, so with a constant current, V=R. The same equation can be used with a fixed resistance to determine current. Capacitance can be measured by comparing the change in charge of a known capacitor. Inductance, conductance, power, and frequency are all planned for this monster of a multimeter.

The initial PCB design is completed (and shown above) and it’s theoretically possible to do on a single-sided board with a minimum of jumpers. An amazing project, and even though you could probably find a similar, ancient meter in a trash heap or on a collector’s shelf, this is by far one of the best Nixie projects we’ve ever seen.

 


Filed under: tool hacks

World’s Largest “Nixie” Clock at World Maker Faire

$
0
0

NixieRex1World Maker Faire was host to some incredible projects. Among the favorites was Nixie Rex [YouTube Link]. Nixie Rex is actually a Panaplex display, since it’s glow comes from 7 planer segments rather than 10 stacked wire digits. One thing that can’t be contested is the fact that Rex is BIG. Each digit is nearly 18 inches tall!

Nixie Rex was created by [Wayne Strattman]. Through his company Strattman Design, [Wayne] supplies lighting effects such as plasma globes and lightning tubes to the museums and corporations. Nixie Rex’s high voltage drive electronics were created by [Walker Chan], a PHD student at MIT. Believe it tor not the entire clock runs on an ATmega328P based Arduino. The digits are daisy chained from the arduino using common Ethernet cables and RJ45 connectors. A Sparkfun DS1307 based real-time clock module ensures the Arduino keeps accurate time.

[Wayne] and Rex were located in “The Dark Room” at Maker Faire, home to many LED and low light projects. The dim lighting certainly helped with the aesthetics, but it did make getting good photos of the clock difficult. Long time Hackaday tipster [Parker] graciously provided us with a size reference up above.

Click past the break to see a closeup of that awesome cathode glow, and a video of the Nixie Rex  in action.

Got to love that cathode glow.

Got to love that tube glow.

 


Filed under: clock hacks

Nixies and Raspis for a Modern Vintage Calculator

$
0
0

nixiecalc_complete

There are a few very rare and very expensive calculators with Nixie tube displays scattered about calculator history, but so far we haven’t seen someone build a truly useful Nixie calculator from scratch. [Scott] did just that. It’s a complete, fully-functional electronic calculator with all the functions you would expect from a standard scientific calculator.

The calculator uses IN-12 Nixies, the standard for anyone wanting to build a clock or other numerical neon discharge display. Each Nixie is controlled by a K155D driver chip, with the driver chip controlled by an I2C IO expander.

The keypad is where this gets interesting; electronics are one thing, but electromechanicals and buttons are a completely new source of headaches. [Scott] ended up using Cherry MX Blue switches, one of the more common switches for mechanical keyboards. By using a standard keyboard switch [Scott] was able to get custom keycaps made for each of the buttons on his calculator.

The brains of the calculator is a Raspberry Pi, with the I2C pins going off to listen in on the several IO expanders on the device. A Raspi might be a little overkill, but an Internet-connected calculator does allow [Scott] to send calculations off to WolframAlpha, or even the copy of Mathematica included in every Pi.

[Scott] has put his project up on Kickstarter. Videos below.


Filed under: Raspberry Pi

Simple and Elegant Single Digit Nixie Tube Clock

$
0
0

We’ve seen a few Nixie projects around here before, but this one might be the simplest yet. [Pinomelean] designed this simple nixie tube clock with just a handful of components.

The Nixie tube chosen for the project is an IN-12a. This tube can be purchased for around just four dollars. It is capable of displaying one digit at a time, zero through nine. Since the tube can only display one digit at a time, the clock is programmed to flash each digit of the current time one by one. There is a longer pause in between each cycle to make it easier to tell when the cycle begins and ends.

The system is broken into two main components. The first is the clock circuit. The clock runs off a PIC microcontroller with a 4MHz crystal. All of the logic is performed via the PIC and only a handful of other components are required. This includes some resistors and capacitors as well as a few high voltage SMD transistors to control the Nixie tube. [Pinomelean] has made this PCB design available so anyone can download it and make their own clock.

The second component to the clock is the power supply. The system is powered by a lithium-ion rechargeable battery, but [Pinomelean] notes that it can also be powered with USB. The lower voltage works well for the microcontroller, but the Nixie tube needs a higher voltage. [Pinomelean] built his own high voltage supply using components scavenged from an old disposable camera. This power supply board design is also made available for download, but it plugs into the main board so you can use another design if desired.. Check out the demo video below to see it in action.


Filed under: Microcontrollers

Hacklet 37 – Nixie Projects

$
0
0

Nothing quite beats the warm glow of a tube. What better way to enjoy that glow than to use it to read numbers? Nixie tubes were created by Haydu Brothers Laboratories, and popularized by Burroughs Corp in 1955. The name comes from NIX I – or “Numeric Indicator eXperimental No. 1″. By the mid 1970’s, seven segment LED’s were becoming popular and low-cost alternatives to Nixies, but they didn’t have the same appeal. Nixie tubes were manufactured all the way into the 1990’s. There’s just something about that tube glow that hackers, makers, and humans in general love. This week’s Hacklet highlights the best Nixie (and Nixie inspired) projects on Hackaday.io!

temperatureDisplayWe start with [Sascha Grant] and Nixie Temperature Display. [Sascha] mixed an Arduino, a Dallas DS18B20 Temperature sensor, and three IN-12A Nixie tubes to create a simple three digit temperature display. We really love the understated laser-cut black acrylic case. An Arduino Pro Micro reads the Dallas 1-wire sensor and converts the temperature to BCD. High voltage duties are handled by a modular HV power supply which bumps 9V up to the required 170V.  Controlling the Nixie tubes themselves are the classic K155ID1 BCD to decimal converter chips – a favorite for clock builders.

 

driverNext up is [Christoph] with Reading Datasheets and Driving Nixie Tubes. Chips like the K155ID1, and the 74141 make driving Nixie tubes easy. They convert Binary Coded Decimal (BCD) to discrete outputs to drive the cathodes of the Nixie. More importantly, the output drivers of this chip are designed to handle the high voltages involved in driving Nixie tubes. These chips aren’t manufactured anymore though, and are becoming rare. [Christoph] used more common parts. His final drive transistor is a MPSA42 high voltage NPN unit. Driving the MPSA42’s is a 74HC595 style shift register. [Christoph] used a somewhat exotic Texas Instruments TPIC6B595 with FET outputs, but any shift register should work here. The project runs on a Stellaris Launchpad, so it should be Arduino compatible code.

fixietube[Davedarko] has the fixietube clock. Fixietube isn’t exactly a Nixie. It’s an LED based display inspired by Nixie tubes. Modern amber LEDs aren’t quite the same as classic Nixies, but they get pretty darn close. [Dave] designed a PCB with a 3×5 matrix of LEDs to display digits. A few blue LEDs add a bit of ambient light. The LEDs are driven with a 74HC595 shift register. The entire assembly mounts inside a tiny glass jam jar, giving it the effect of being a vacuum tube. The results speak for themselves – fixietubes certainly aren’t Nixies, but they look pretty darn good. Add a nice 3D printed case, and you’ve got a great project which is safe for anyone to build.

openNixieFinally, we have [Johnny.drazzi] with his Open Nixie Clock Display. [Johnny] has been working on Open Nixie for a few years. The goal is to create a Nixie based clock display which can be driven over the SPI bus. So far, [Johnny] has 6 Russian IN-12 tubes glowing with the help of the ubiquitous K155ID1 BCD to decimal converter. The colons of the clock are created with two INS-1 neon indicators. [Johnny] spends a lot of time analyzing the characteristics of a Nixie tube – including the strike voltage, and steady state current. If you’re interested in building a Nixie circuit yourself, his research is well worth a read!

Not satisfied? Want more Nixie goodness? Check out our Nixie tube project list!

That’s about all the time we have for this week’s Hacklet. As always, see you next week. Same hack time, same hack channel, bringing you the best of Hackaday.io!


Filed under: Hackaday Columns

Nixie Clock Uses Ingenious Software RTC

$
0
0

There’s something about Nixie Tube Clocks that keeps drawing hackers to build their own iterations, even if its been done a gazillion times before. Their depleting supply, and the high voltage drivers to control them, makes it all the more interesting. [Pete Mills], a veteran of several interesting projects, many of which we have featured here, is no exception and decided to build his own version of a Nixie Tube Clock, but with several nifty features.

To put it in a nut shell, his Clock uses Nixie tubes for display, has USB serial communication, temperature measurement, AC frequency measurement, time and date keeping with a software based RTC, software driven boost converter for the 175V DC nixie tube supply and a windows app for clock configuration.

The software based time keeping is pretty interesting. It is essentially a method to calibrate the crystal to more closely match real time, and some code to keep track of the time and date.  This obviously leads to a reduction in components and the spin-offs that comes with that; increased reliability, cost reduction, real estate savings. The RTC code can easily be ported to other clock projects irrespective of the display used. Besides keeping track of time and date, it can also account for leap years, and report the day of the week. A zero-crossing detector connected to the low-voltage transformer supply that powers the clock can also be used as an alternative way of keeping time.

When connected to a serial console over UART, the clock can report back many variables depending on the queries it receives. The high voltage DC needed to drive the Nixie tubes is generated using a simple boost converter controlled by the micro controller. An important “gotcha” that [Pete] deduced after blowing off several fuses, was to disconnect the micro controller port connected to the PWM timer and explicitly set it to output low via software. There’s a couple of other issues that he ran into – such as board layout, power supply, incorrect pullups – that make for interesting reading. The clock enclosure is still work in progress, but [Pete] hopes to get it done sometime soon.

He also wrote a Windows application – Nixie Clock Communicator – to help with time setting and calibration. Finally, he describes in detail the process of calibrating the clock’s software based RTC. Based on his calculations, the clock will drift by about 48 seconds over an 8 month period. Since he will be adjusting for DST much sooner than that, his clock ought to be off from correct time by not more than a minute at any given time. Not bad for a clock that does not use a dedicated RTC chip. [Pete] still has some of the prototype boards to give away if someone is interested. If you’d rather build it yourself from scratch, [Pete] has posted the software code, schematics and PCB, and a BoM.


Filed under: clock hacks

Plexitube Owl Clock Watches You Sleep

$
0
0

Wait, plexitube? Is that a typo? Surely we mean Nixie tubes!

For a Christmas project [Kurt] wanted to build some owl-inspired clocks — with bit of a retro feel. Given the complexities of finding and using actual Nixie tubes, he went with an alternative — a Plexitube.

lightguidescloseup
Closeup of Plexitube

Plexitubes look like futuristic Nixie tubes. They can have different stylized numbers. They’re crisp, they’re bright, and they are completely customizable. They’re made of edgelit acrylic! By laser etching the design onto pieces of acrylic and feeding LED light into the edge, very much like how a light-pipe works, it’s possible to have a neon-light effect — using nothing more than plastic and some LEDs.

He designed custom PCBs for the project, with SMD LEDs for the plexitubes. Making use of a laser cutter, he designed the actual owl to be made out of lightly formed wood cutouts — the entire thing looks absolutely fantastic.

As far as “Nixie tube” clocks this has gotta be one of the most aesthetically pleasing ones we’ve seen in a while, but if you’re looking for an all-out-Nixietube-extravaganza… take a look at this whopping thirteen tube clock.

[Thanks for the tip Lawrence!]


Filed under: clock hacks

Hackaday Prize Entry: A Programmable Calculator With Nixie Tubes

$
0
0

For [Robert]’s entry into The Hackaday Prize, he’s starting off with some basic questions. What’s better than a Nixie tube? More Nixies. What’s better than a calculator? An RPN calculator. What do you get when you combine the two? A calculator that is absurdly large, even by 1970s desk calculator standards, uses a lot of power, and takes up too much space. Sounds good to us.

Nixies, at least when there are a lot of them, are tricky devices. They only draw about 50mA of current, but they only light up when above 150V. That’s only about seven watts, and it’s easy enough for the Arduino-heads out there to build a circuit to drive a few Nixies for a clock. Driving dozens of Nixies is a bit harder. For [Robert]’s RPN calculator, he’s estimating a little under 50W of power being dumped into this calculator.

With the considerable power considerations taken care of, [Robert] turned his attention to the display board. This is going to be a very impressive build, with 80 IN-12B tubes organized in four stack levels of twenty tubes each. The tubes will be controlled with the Maxim MAX6922 VFD driver. This chip has a serial interface, which means it’s relatively easy to have any microcontroller blink these tubes. And of course, it does double-duty as a clock.

The HackadayPrize2016 is Sponsored by:

Filed under: The Hackaday Prize

You May Have a Nixie Tube Clock, but Can Yours Levitate?

$
0
0

Nixie tubes, electromagnets, levitation, and microcontrollers — this project has “Hackaday” written all over it!

Time Flies: Levitating Nixie Clock comes from [Tony Adams], and uses a lot of technology we’ve seen before, but in a new and interesting way. A nixie tube clock is nothing new, but using electromagnets to levitate it above a base certainly paired with inductive coupling to transmit power using no wires make this floating nixie build a real treat.

In order to achieve this feat, [Tony] used coils to wireless transmit power from the base to the floating platform that the tubes are mounted to. That alone is a pretty cool idea that would have drawn our attention, but he goes one step further and transmits the time and settings signal wirelessly from the base to the levitating clock as well. That is accomplished with an IR transmitter on the base sending a signal to an IR receiver on the clock.

It’s a pretty ingenious solution, and it’s no surprise that we’ve seen [Tony’s] work before. Back in 2012, we featured another of his projects that uses a lot of the same techniques: a nixie tube chess set. With top-notch craftsmanship and clever ideas like this, we’re definitely looking forward to seeing what else he can come up with!

The project is has about three weeks left in it’s campaign and is still a bit more than half-way from the goal.


Filed under: clock hacks, Crowd Funding

The Art of Making A Nixie Tube

$
0
0

Three years ago we covered [Dalibor Farnby]’s adventures in making his own Nixie tubes. Back then it was just a hobby, a kind of exploration into the past. He didn’t stop, and it soon became his primary occupation. In this video he shows the striking process of making one of his Nixie tubes.

Each of his tubes get an astounding amount of love and attention. An evolution of the process he has been working on for five years now. The video starts with the cleaning process for the newly etched metal parts. Each one is washed and dried before being taken for storage inside a clean hood. The metal parts are carefully hand bent. Little ceramic pins are carefully glued and bonded. These are used to hold the numbers apart from each other. The assembly is spot welded together.

In a separate cut work begins on the glass. The first part to make is the bottom which holds the wire leads. These are joined and then annealed. Inspection is performed on a polariscope and a leak detector before they are set aside for assembly. Back to the workbench the leads are spot welded to the frame holding the numbers.

It continues with amazing attention to detail. So much effort goes into each step. In the end a very beautiful nixie tube sits on a test rack, working through enough cycles to be certified ready for sale. The numbers crisp, clear, and beautiful. Great work keeping this loved part of history alive in the modern age.


Filed under: misc hacks, slider

Exquisitely Crafted Nixie Tube Weatherclock

$
0
0

The Weatherclock is more than just a clock sporting Nixie tubes and neon lamps. There is even more to it than the wonderful workmanship and the big, beautiful pictures in the build log. [Bradley]’s Weatherclock is not only internet-connected, it automatically looks up local weather and sets the backlights of the numbers to reflect current weather conditions. For example, green for roughly room temperature, blue for cold, red for warm, flashing blue for rain, flashing white for lightning, scrolling white for fog and ice, and so on.

neonixieclock_02The enclosure is custom-made and the sockets for the tubes are seated in a laser-cut plastic frame. While seating the sockets, [Bradley] noticed that an Adafruit Neopixel RGB LED breakout board fit perfectly between the tube leads. By seating one Neopixel behind each Nixie indicator, each number could have a programmable backlight that just happened to look fabulous.

Witpreboxh an Electric Imp board used for WiFi the capabilities of the Weatherclock were rounded out on the inside. On the outside, a custom enclosure ties it all together. [Bradley] says his family had gotten so used to having the Weatherclock show them the outside conditions that they really missed it when it was down for maintenance or work – which shouldn’t happen much anymore as the project is pretty much complete.

It’s interesting to see new features in Nixie clocks. Nixie tubes have such enduring appeal that using them alone has its own charm, and at least one dedicated craftsman actually makes new ones from scratch.


Filed under: clock hacks

Smoothly Modernized Nixie Display

$
0
0

The renaissance of Nixie tube popularity amid the nostalgia surrounding older tech has made them almost prohibitively expensive for individual projects. Seeing an opportunity to modernize the beloved devices, [Connor Nishijima] has unleashed this new, LED edge-lit display that he has dubbed Lixie.

We featured his prototype a few years ago. That design used dots to make up each character but this upgrade smooths that out with sleek lines and a look one would almost expect from a professional device — or at the very least something you’d see in a cyberpunk near-future. The color-changing Neopixel LEDs — moderated by a cleverly designed filter — allow for customization to your heart’s content, and the laser-cut acrylic panes allow for larger displays to be produced with relative ease.

The image above (and the video below) show two revisions of the most recent Lixie prototypes. There is a huge improvement on the right, as the digits are now outlines instead of single strokes and engraved instead of cut completely through the acrylic. The difference if phenomenal, and in our opinion move the “back to the drawing board” effect to “ready for primetime”. [Connor] and his team are working on just that, with a Tindie preorder in place for the first production-ready digits to roll off their line.

Considering that Nixie Tubes were originally considered too expensive for mass-produced items like clocks, it’s ironic they’re seeing a revival in hobbyist projects for just that purpose. Lixie, then, may fit the purpose for those seeing a cheaper solution without sacrificing on the quality of the result. The design is fully open-source, so get to hacking!

For a suitably cyberpunk application of a Nixie tube, check out this motorcycle speedometer. Oh, and lest you think we’re duplicating ourselves, there was another edge-lit Nixie-alike project featured here just a few weeks ago. Seems good ideas come in waves.


Filed under: Arduino Hacks, led hacks, slider

Nixie Tachometer Displays in Style

$
0
0

Nixietach II is a feature-rich tachomoter [Jeff LaBundy] built for his 1971 Ford LTD. It displays RPM with an error rate of only 0.03 RPM at 1,000 RPM

The latest iteration of a long-running project, [Jeff] approached it with three goals: the tachometer had to be self-contained and easy to install, the enclosure had to be of reasonable size, and it had to include new and exciting features over the first two versions.

The finished project consists of an enclosure mounted under the dash with a sensor box in the engine bay connected to the ignition coil. He can also flip a switch and the Nixietach serves as a dwell sensor able to measure the cam’s angle of rotation during which the ignition system’s contact points are closed.  The dash-mounted display consists of those awesome Soviet nixie tubes with a lovely screen-printed case. Its reverse has a USB plug for datalogging and a programming interface.

Hackaday has published some great car projects recently, like this chess set built from car parts and a 90-degree gearbox harvested from a wrecked car.

 

 

 


Filed under: car hacks

The White Rabbit Nixie Clock

$
0
0

Instructables user [hellboy] — a recent convert to the ways of the laser cutter — is a longtime admirer of Nixie tubes. In melding these two joys, he has been able to design and build this gorgeous work of art: The White Rabbit Nixie Clock.

Going into this build, [hellboy] was concerned over the lifespan of the tubes, and so needed to be able to turn them off when not needed. Discarding their original idea of having the clock open with servos, [hellboy]’s clock opens by pressing down on a bar and is closed by snapping the lid shut — albeit slightly more complicated than your average timepiece. Given the intricacy of the mechanism, he had to run through numerous prototypes — testing, tweaking and scrapping parts along the way.

With the power of steam-bending, [hellboy] lovingly moulded walnut planks and a sundry list of other types of wood to define the ‘rabbit’ appearance of the mechanism, and the other parts of the clock’s case. Once again, designing the clock around a row of six pivoting Nixie tubes was no mean feat — especially, as [hellboy] points out, when twenty or so wires need to rotate with them! After a few attempts, the Nixie tubes, their 3mm blue LEDs and associated wires were properly seated.

[hellboy] urges strong caution when working with the power supply for these Nixie tubes, doubly so since he needed to modify the circuit to handle turning off while still keeping the time. A little trial and error was needed for proper positioning of the electronics, but he has designed the backplate  to be easily removable should the need to access the internals arise.

Careful assembly of the opening mechanism and repeated testing to make sure everything fit might seem tedious, but he is operating under some stringent tolerances. Once finally assembled, [hellboy] found he needed to add a pair of brass knobs to assist in actuating the clock, as it doesn’t have enough mass to counteract the force on the lever. The addition simply means there is more of this clock to admire. Excuse us while we watch the time pass.

[Thanks for the tip, Irish!]

Mystery Nixie Clock From 2001: A Space Odyssey, And Pulsar

$
0
0

Every now and then something old comes along which we’re surprised has never been on Hackaday. That’s especially the case here since it includes nixie tubes and is a clock, two things beloved here by many. Then again, it’s not a hack, but it just should be (hint hint).

Pulsar mystery clock 2001: A Space Odyssey clock

This clock’s origins are a bit of a mystery. As detailed in [Asto_Vidatu]’s Reddit post, he found it when cleaning out his mother’s garage. Larger photos of the clock internals are on his imgur page and are sure to delight and intrigue you. It looks very much like a clock widely thought to be the one which the Hamilton Watch Company made for Stanley Kubrick. In 1966, Kubrick commissioned Hamilton to make a futuristic looking clock and watches for his upcoming movie, 2001: A Space Odyssey. The watches appear in the movie on the wrists of the astronauts but the clock was left on the cutting room floor. After the movie was made, Kubrick gave the clock back to Hamilton, and it ended up in the possession of [Asto_Vidatu]’s grandfather, who worked on the team which made the clock.

All this might lead you to think that this is the clock made for the movie, instead of the one with the name Hamilton on it but the name Pulsar is thought to have been dreamed up around the time the movie came out. So where did it come from? Was it a hack by [Asto_Vidatu]’s grandfather or others at Hamilton? Was it a product which Hamilton had worked on, or perhaps a marketing gimmick for the Pulsar watch?

There’s one thing we do know, this is crying out for a modern remake. If you can find some nixie tubes then perhaps these driver boards will help. Or maybe do it with nixie tube lookalikes, such as these edge-lit acrylic digits.

Viewing all 47 articles
Browse latest View live


<script src="https://jsc.adskeeper.com/r/s/rssing.com.1596347.js" async> </script>